2. Mathematically study on vibration of visco‑elastic parallelogram plate

Subodh Kumar Sharma1, Ashish Kumar Sharma2

1Head of Mathematics Department, Government P. G. College, Ambala Cantt. Haryana, India

2Department of Mathematics, Pacific University, Udaipur, Raj., India

2Corresponding author

E-mail: 1subodhamb@redifmail.com, 2ashishk482@gmail.com

(Received 31 March 2015; received in revised form 5 May 2015; accepted 15 May 2015)

Abstract. The free vibration of parallelogram plate with varying thickness and thermal effect are investigated in the present study. Using the separation of variables method, the governing differential equation has been solved for vibration of visco‑elastic orthotropic parallelogram plate. An approximate but quite convenient frequency equation is derived by using Rayleigh‑Ritz technique with a two‑term deflection function. The frequencies corresponding to the first two modes of vibrations are obtained for a parallelogram plate for different values of taper constant and thermal gradient.

Keywords: visco‑elastic, vibration, parallelogram plate, frequency, taper constant.

References

[1]        Leissa A. W. Vibration of Plate, NASA SP-160, 1969.

[2]        Leissa A. W. Recent studies in plate vibration 1981-1985 part II, complicating effects. Shock and Vibration Digest, Vol. 19, 1987, p. 10‑24.

[3]        Gupta A. K., Johri T., Vats R. P. Thermal effect on vibration of non-homogeneous orthotropic rectangular plate having bi-directional parabolically varying thickness. Proceeding of International Conference in World Congress on Engineering and Computer Science, San-Francisco, USA, 2007, p. 784‑787.

[4]        Gupta A. K., Khanna A. Vibration of visco-elastic rectangular plate with linearly thickness variations in both directions. Journal of Sound and Vibration, Vol. 301, 2007, p. 450‑457.

[5]        Singh B., Saxena V. Transverse vibration of rectangular plate with bi-directional thickness variation. Journal of Sound and Vibration, Vol. 198, 1996, p. 51‑65.

[6]        Sobotka Z. Vibration of rectangular orthotropic visco-elastic plate. Acta Techanica CSAV, 1969, p. 511‑514.

[7]        Gupta A. K., Kumar Amit, Gupta Dhram Veer Vibration of visco-elastic orthotropic parallelogram plate with parabolically thickness variation. International Journal of Engineering, Vol. 8, Issue 2, 2012, p. 61‑70.

[8]        Warade R. W., Deshmukh K. C. Thermal deflection of a thin clamped circular plate due to a partially distributive heat supply. Ganita, Vol. 55, 2004, p. 179‑186.

[9]        Sobotka Z. Free vibration of visco-elastic orthotropic rectangular plates. Acta Techanica CSAV, 1978, p. 678‑705.

[10]     Gupta A. K., Kumar L. Thermal effect on vibration of non-homogenous visco-elastic rectangular plate of linear varying thickness. Meccanica, Vol. 43, 2008, p. 47‑54.

[11]     Khanna A., Kaur N., Sharma A. K. Effect of varying poisson ratio on thermally induced vibrations of non-homogeneous rectangular plate. Indian Journal of Science and Technology, Vol. 5, Issue 9, 2012, p. 3263‑3267.

[12]     Sharma S. K., Sharma A. K. Mechanical vibration of orthotropic rectangular plate with 2D linearly varying thickness and thermal effect. International Journal of Research in Advent Technology, Vol. 2, Issue 6, 2014, p. 184‑190.

[13]     Khanna A., Sharma A. K. Vibration analysis of visco-elastic square plate of variable thickness with thermal gradient. International Journal of Engineering and Applied Sciences, Vol. 3, Issue 4, 2011, p. 1‑6.

[14]     Kumar Sharma A., Sharma S. K. Vibration computational of visco-elastic plate with sinusoidal thickness variation and linearly thermal effect in 2D. Journal of Advanced Research in Applied Mechanics and Computational Fluid Dynamics, Vol. 1, Issue 1, 2014, p. 46‑54.

[15]     Khanna A., Kumar A., Bhatia M. A computational prediction on two dimensional thermal effect on vibration of visco-elastic square plate of variable thickness. Proceeding of CONIAPS XIII, Deharadun, 2011.

[16]     Khanna A., Sharma A. K. Natural vibration of visco-elastic plate of varying thickness with thermal effect. Journal of Applied Science and Engineering, Vol. 16, Issue 2, 2013, p. 135‑140.

[17]     Kumar Sharma A., Sharma S. K. Free vibration analysis of visco-elastic orthotropic rectangular plate with bi-parabolic thermal effect and bi-linear thickness variation. Journal of Advanced Research in Applied Mechanics and Computational Fluid Dynamics, Vol. 1, Issue 1, 2014, p. 10‑23.

[18]     Sharma S. K., Sharma A. K. Effect of bi-parabolic thermal and thickness variation on vibration of visco‑elastic orthotropic rectangular plate. Journal of Advanced Research in Manufacturing, Material Science and Metallurgical Engineering, Vol. 1, Issue 2, 2014, p. 26‑38.

[19]     Khanna A., Sharma A. K. Mechanical vibration of visco-elastic plate with thickness variation. Journal of Applied Mathematical Research, Vol. 1, Issue 2, 2012, p. 150‑158.

[20]     Khanna A., Kaur N., Sharma A. K. Effect of varying Poisson ratio on thermally induced vibrations of non-homogeneous rectangular plate. Indian Journal of Science and Technology, Vol. 5, Issue 9, 2012, p. 3263‑3267.

[21]     Khanna A., Sharma A. K. Analysis of free vibrations of visco elastic square plate of variable thickness with temperature effect. International Journal of Applied Engineering Research, Vol. 2, Issue 2, 2011, p. 312‑317.

Cite this article

Sharma Subodh Kumar, Sharma Ashish Kumar Mathematically study on vibration of visco‑elastic parallelogram plate. Mathematical Models in Engineering, Vol. 1, Issue 1, 2015, p. 12‑19.

 

Mathematical Models in Engineering. June 2015, Volume 1, Issue 1
JVE International Ltd. ISSN Print 2351-5279, ISSN Online 2424-4627, Kaunas, Lithuania