1. Structural damage identification based on Cuckoo search algorithm

H. J. Xu1, J. K. Liu2, Z. R. Lu3

Department of Applied Mechanics, Sun Yat-sen University,
Guangzhou, Guangdong Province, 510006, P. R. China, Fax: +86-20-84113689, Tel: +86-20-39333990

3Corresponding author

E-mail: 1xu_haojie@qq.com, 2liujike@mail.sysu.edu.cn, 3lvzhr@mail.sysu.edu.cn

(Received 31 March 2015; received in revised form 5 May 2015; accepted 15 May 2015)

Abstract. An optimization approach based on Cuckoo Search (CS) algorithm is proposed for structural local damage detection in this study. The nonlinear objective function for the damage identification problem is established by using the natural frequencies and modal assurance criteria (MAC). The CS algorithm is presented to solve the objective function. A dual‑span continuous beam and a truss structure are studied as numerical example to illustrate the correctness and efficiency of the propose method. Meanwhile, a laboratory work is conducted for further verification. The simulation and experiment results show that the CS algorithm can identify the local structural damages effectively even under measurement noise. The advantage of the present method is that only the first few natural frequencies and mode shapes are needed in the identification.

Keywords: damage identification, Cuckoo search algorithm, modal assurance criteria, frequency domain.

References

[1]        Cawley P., Adams R. D. The location of defects in structures from measurements of natural frequencies. Journal of Strain Analysis, Vol. 14, Issue 2, 1979, p. 49‑57.

[2]        Narkis Y. Identification of crack location in vibrating simply supported beams. Journal of Sound and Vibration, Vol. 172, Issue 4, 1994, p. 549‑558.

[3]        Ghafory M., Ghasemi M. System identification method by using inverse solution of equations of motion in frequency domain. Journal of Vibration and Control, Vol. 19, Issue 11, 2013, p. 1633‑1645.

[4]        Wang S. S., Ren Q. W., Qiao P. Z. Structural damage detection using local damage factor. Journal of Vibration and Control, Vol. 12, Issue 9, 2006, p. 955‑973.

[5]        Yang Q. W. A new damage identification method based on structural flexibility disassembly. Journal of Vibration and Control, Vol. 17, Issue 7, 2011, p. 1000‑1008.

[6]        Lu Z. R., Law S. S. Features of dynamic response sensitivity and its application in damage detection. Journal of Sound and Vibration, Vol. 303, Issue 1, 2007, p. 305‑329.

[7]        Fu Y. Z., Lu Z. R., Liu J. K. Damage identification in plates using finite element model updating in time domain. Journal of Sound and Vibration, Vol. 332, 2013, p. 7018‑7032.

[8]        Law S. S., Zhang K., Duan Z. D. Structural damage detection from coupling forces between substructures under support excitation. Engineering Structures, Vol. 32, Issue 8, 2010, p. 2221‑2228.

[9]        Lu X. B., Liu J. K., Lu Z. R. A two-step approach for crack identification in beam. Journal of Sound and Vibration, Vol. 332, Issue 2, 2013, p. 282‑293.

[10]     Wu X., Ghaboussi J., Garrett J. H. Use of neural networks in detection of structural damge. Computers and Structures, Vol. 42, 1992, p. 649‑659.

[11]     Buezas F. S., Rosales M. B., Filipich C. P. Damage detection with genetic algorithms taking into account a crack contact model. Engineering Fracture Mechanics, Vol. 78, Issue 4, 2011, p. 695‑712.

[12]     Chou J. H., Ghaboussi J. Genetic algorithm in structural damage detection. Computers and Structures, Vol. 79, Issue 14, 2001, p. 1335‑1353.

[13]     Luo Y., Zhang J. T., Li X. X. The optimization of PID controller parameters based on artificial dish swarm algorithm. Proceedings of the IEEE International Conference on Automation and Logistics, 2007, p. 1058‑1062.

[14]     Yu L., Xu P. Structural health monitoring based on continuous ACO method. Microelectronics Reliability, Vol. 51, Issue 2, 2011, p. 270‑278.

[15]     Guo H. Y., Li Z. L. Structural damage identification based on evidence fusion and improved particle swarm optimization. Journal of Vibration and Control, Vol. 20, Issue 9, 2014, p. 1279‑1292.

[16]     Yang X. S., Deb S. Engineering optimization by Cuckoo Search. International Journal of Mathematical Modelling and Numerical Optimisation, Vol. 1, Issue 4, 2010, p. 330‑343.

[17]     Walton S., Hassan O., Morgan K., Brown M. R. Modified cuckoo search: A new gradient free optimization algorithm. Chaos, Solitons and Fractals, Vol. 44, 2011, p. 710‑718.

[18]     Yang X. S., Deb S. Multi-objective cuckoo search for design optimization. Computer and Operations Research, Vol. 40, 2013, p. 1616‑1624.

[19]     Wen L., Liang X. M., Huang Y. F., Chen Y. X. An effective hybrid cuckoo search algorithm for constrained global optimization. Neural Computing and Applications, Vol. 25, 2014, p. 991‑926.

[20]     Yang X. S. Engineering Optimization: an Introduction with Metaheuristic Applications. John Wiley and Sons, 2010.

[21]     Yang X. S., Deb S. Cuckoo search via Levy flights. Proceedings of World Congress on Nature and Biologically Inspired Computing, 2009, p. 210‑214.

[22]     Brehm M., Zabel V., Bucher C. An automatic mode pairing strategy using an enhanced modal assurance criterion based on modal strain energies. Journal of Sound and Vibration, Vol. 329, 2010, p. 5375‑5392.

[23]     Kang F., Li J. J., Xu Q. Damage detection based on improved particle swarm optimization using vibration data. Applied Soft Computing, Vol. 12, Issue 8, 2012, p. 2329‑2335.

[24]     Shi Z. Y., Law S. S., Zhang L. M. Structural damage detection from modal strain energy change. Journal of Engineering Mechanics, ASCE, Vol. 126, Issue 12, 2000, p. 1216‑1223.

Cite this article

Xu H. J., Liu J. K., Lu Z. R. Structural damage identification based on Cuckoo search algorithm. Mathematical Models in Engineering, Vol. 1, Issue 1, 2015, p. 1‑11.

 

Mathematical Models in Engineering. June 2015, Volume 1, Issue 1
JVE International Ltd. ISSN Print 2351-5279, ISSN Online 2424-4627, Kaunas, Lithuania