1572. The effects of realistic tactile haptic feedback on user surface texture perception

Shana Smith1, Gregory C. Smith2, Ji-Liang Lee3

Department of Mechanical Engineering, National Taiwan University, Taipei City, Taiwan, R.O.C.

1Corresponding author

E-mail: 1ssmith@ntu.edu.tw, 2gsfsmith@msn.com, 3foxlee1124@gmail.com

(Received 14 July 2014; received in revised form 1 September 2014; accepted 18 September 2014)

Abstract. Haptic interaction plays an important role in virtual reality and human‑computer interaction paradigms. However, most haptic devices only create kinesthetic feedback or simple unrealistic tactile feedback. This study presents theory and practice for creating realistic tactile feedback. The approach is based upon skin sensing capabilities, tactile perception principles, and tactile stimulation techniques. The approach uses a vibration sensor, controller, and actuator to create a tactile haptic device. The device is portable, small, light, and cost-effective. This study uses the device to create realistic tactile sensations from actual surface features, and measures the effects of tactile haptic feedback on user surface texture perception. Verification test results show that the device can create realistic tactile feedback that matches actual surface features well. User test results show that users can match actuator vibrations for 40‑grit and 180‑grit surface textures to actual 40‑grit and 180‑grit surface textures 99.3 % of the time.

Keywords: realistic tactile haptic feedback, user surface texture perception.

References

[1]        Osgouei R., Lee H., Choi S. Haptic-enabled driving training system. Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication, 2013, p. 302‑303.

[2]        Viciana-Abad R., Reyes-Lecuona A., Rosa-Pujazón A., Pérez-Lorenzo J. The influence of different sensory cues as selection feedback and co-location in presence and task performance. Multimedia Tools and Applications, Vol. 68, Issue 3, 2014, p. 623‑639.

[3]        Kammermeier P., Kron A., Hoogen J., Schmidt G. Display of holistic haptic sensations by combined tactile and kinesthetic feedback. Presence: Teleoperators and Virtual Environments, Vol. 13, Issue 1, 2004, p. 1‑15.

[4]        Massie T. H., Salisbury J. K. The PHANTOM haptic interface: a device for probing virtual objects. Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Chicago, IL, 1994, p. 132‑137.

[5]        Asamura N., Tomori N., Shinoda H. A tactile feeling display based on selective stimulation to skin receptors. Virtual Reality International Symposium, 1998, p. 36‑42.

[6]        Hayward V., Cruz-Hernandez J. Tactile display device using distributed lateral skin stretch. International Mechanical Engineering Congress & Exposition, 2000, p. 1309‑1314.

[7]        Makino Y., Asamura N., Shinoda H. A whole palm tactile display using suction pressure. IEEE International Conference on Robotics and Automation, 2004, p. 1124‑1129.

[8]        Dosher J., Hannaford B. Human interaction with small haptic effects. Presence: Teleoperators and Virtual Environments, Vol. 14, Issue 3, 2005, p. 329‑344.

[9]        Hashimoto Y., Nakata S., Kajimoto H. Novel tactile display for emotional tactile experience. International Conference on Advances in Computer Entertainment Technology, 2009, p. 124‑131.

[10]     Murray A., Klatzky R., Khosia P. Psychophysical characterization and test bed validation of a wearable vibro-tactile glove for tele-manipulation. Presence: Teleoperators and Virtual Environments, Vol. 12, Issue 2, 2003, p. 156‑182.

[11]     Pabon S., Sotgiu E., Leonardi R., Brancolini C., Portillo-Rodriguez O., Frisoli A., Bergamasco M. A data-glove with vibro-tactile stimulators for virtual social interaction and rehabilitation. The 10th Annual International Workshop on Presence, 2007, p. 345‑388.

[12]     Romano J., Gray S., Jacobs N., Kuchenbecker K. Toward tactilely transparent gloves: collocated slip sensing and vibrotactile actuation. Proceedings of the 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2009,
p. 279‑284.

[13]     Ryu J., Jung J., Park G., Choi S. Psychophysical model for vibrotactile rendering in mobile devices. Presence: Teleoperators and Virtual Environments, Vol. 19, Issue 4, 2010, p. 364‑387.

[14]     Hollins M., Bensma S., Roy E. Vibrotaction and texture perception. Behavioural Brain Research, Vol. 135, Issue 1‑2, 2002, p. 51‑56.

[15]     Smith A., Chapman C., Deslandes M., Langlais J., Thibodeau M. Role of friction and tangential force variation in the subjective scaling of tactile roughness. Experimental Brain Research, Vol. 144, Issue 2, 2002, p. 211‑223.

[16]     Hwang J., Hwang, W. Vibration perception and excitatory direction for haptic devices. Journal of Intelligent Manufacturing, Vol. 22, Issue 1, 2010, p. 17‑27.

[17]     Johansson R., Vallbo A. Tactile sensory coding in the glabrous skin of the human hand. Trends in Neurosciences, Vol. 6, 1983, p. 27‑32.

[18]     Okamura A. M., Dennerlein J. T., Howe R. D. Vibration feedback models for virtual environments. IEEE International Conference on Robotics and Automation, Leuven, Belgium, Vol. 1, 1998, p. 674‑679.

[19]     Tanaka Y., Tanaka M., Chonan S. Development of a sensor system for collecting tactile information. Microsystem Technologies, Vol. 13, Issues 8‑10, 2007, p. 1005‑1013.

[20]     Kyung K. U., Son S. W., Kwon D. S., Kim M. S. Design of an integrated tactile display system. IEEE International Conference on Robotics and Automation, Vol. 1, 2004, p. 776‑778.

[21]     Ikei Y. Development of realistic haptic presentation media. Virtual and Mixed Reality. Lecture Notes in Computer Science, Vol. 5622, 2009, p. 318‑325.

[22]     Garcia-Hernandez N., Tsagarakis N., Caldwell D. Feeling through tactile displays: A study on the effect of the array density and size on the discrimination of tactile patterns. IEEE Transactions on Haptics, Vol. 4, Issue 2, 2011, p. 100‑110.

[23]     Hagan M. T., Demuth H. B., Jesus O. D. An introduction to the use of neural networks in control systems. International Journal of Robust and Nonlinear Control, Vol. 12, Issue 11, 2002, p. 959‑985.

[24]     Akkila T., Lindblad T., Lund-Jensen B., Szekely G., Eide A. A hardware implementation of an analog neural network for Gaussian peak-fitting. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 327, Issues 2‑3, 1993, p. 573‑579.

Cite this article

Smith Shana, Smith Gregory C., Lee Ji‑Liang The effects of realistic tactile haptic feedback on user surface texture perception. Journal of Vibroengineering, Vol. 17, Issue 2, 2015, p. 1004‑1016.

 

© JVE International Ltd. Journal of Vibroengineering. Mar 2015, Volume 17, Issue 2. ISSN 1392-8716