1563. Experimental investigation of high temperature thermal‑vibration characteristics for composite wing structure of hypersonic flight vehicles

Dafang Wu1, Yuewu Wang2, Ying Pu3, Lan Shang4, Zhentong Gao5

School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics,
Beijing 100191, China

1Corresponding author

E-mail: 1wudafang@buaa.edu.cn, 2wangyuewu@buaa.edu.cn, 3puying9101@163.com, 4buaashang@163.com, 5buaagaozt@126.com

(Received 24 December 2014; received in revised form 11 February 2015; accepted 10 March 2015)

Abstract. A thermal-vibration test system is established by combining the high‑temperature transient heating simulation system and vibration test apparatus, and this system can carry out experimental research on the thermal modal of high-temperature-resistant composite wing structure of hypersonic flight vehicles under high temperature environment with 1100C. The vibration signals of the composite wing structure in high-temperature environments are transmitted to non‑high temperature field by using self-developed extension configurations and then the vibration signals are measured and identified by using ordinary acceleration sensors. Based on a time‑frequency joint analysis technique, the experimental data is analyzed and processed to obtain the key vibration characteristic parameters of composite wing structure, such as the natural frequency and mode shapes, in a thermal-vibration coupled environment up to 1100C. The experimental results provide an important basis for the dynamic performance analysis and safety design of composite wing structure under high-temperature thermal‑vibration conditions.

Keywords: composite material, wing structure, high-temperature environments, vibration performance, hypersonic flight vehicles.

References

[1]        Tang J. Current status and trends of advanced composites in aerospace. Spacecraft Environment Engineering, Vol. 30, Issue 4, 2013, p. 352-359.

[2]        Du S. Advanced composite materials and aerospace engineering. Acta Materiae Compositae Sinica, Vol. 24, Issue 1, 2007, p. 1‑12.

[3]        Lee I., Lee D. M., Oh L. K. Supersonic flutter analysis of stiffened laminated plates subjected to thermal load. Journal of Sound and Vibration, Vol. 234, 1999, p 49-67.

[4]        Earl A. T. Thermal Structures for Aerospace Applications. AIAA Press, Reston, 1996.

[5]        Jeyaraj P., Ganesan N., Chandramouli P. Vibration and acoustic response of a composite plate with inherent material damping in a thermal environment. Journal of Sound and Vibration, Vol. 320, Issue 1-2, p. 322-338.

[6]        Xia W., Yang Z. Vibration analysis to composite panels in thermal environment. Chinese Journal of Applied Mechanics, Vol. 22, Issue 3, 2005, p. 359-364.

[7]        Brown A. M. Temperature-dependent modal test analysis correlation of X-34 FASTRAC composite rocket nozzle. Journal of Propulsion and Power, Vol. 18, Issue 2, 2002, p. 284-288.

[8]        Yiming F., Yang C., Jun Z. Analysis of nonlinear dynamic response for delaminated fiber-metal laminated beam under unsteady temperature field. Journal of Sound and Vibration, Vol. 333, Issue 22, 2014, p. 5803-5816.

[9]        Yang Z., Xia W., Zhang R. Thermal flutter characteristics of laminated composite panels. Shock and Vibration, Vol. 29, Issue 9, 2010, p. 18-22.

[10]     Haider N. A., Ali H. N. Nonlinear interactions in the responses of heated annular plates. 45th Structures, Structural Dynamics and Materials Conference, Palm Springs, California, 2004.

[11]     Malekzadeh P., Fiouz A. R., Sobhrouyan M. Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment. International Journal of Pressure Vessels and Piping, Vol. 89, 2012, p. 210-221.

[12]     Natalie D. S. High-temperature modal survey of a hot-structure control surface. 27th International Congress of the Aeronautical Sciences, Vol. 3, 2010, p. 2091-2110.

[13]     Jeon B. H., Kang H. W., Lee Y. S. Free vibration characteristics of rectangular plate under rapid thermal loading. The 9th International Congress on Thermal Stresses, Budapest, Hungary, 2011.

[14]     Wang Y. Technology research about vibration test under high temperature. Harbin Institute of Technology, 2012.

[15]     Yu P., Zhang T., Wang X. Flexural property testing for 2.5D SiO2 Fiber-reinforced-SiO2 Composite. Aerospace Materials and Technology, Vol. 5, 2005, p. 58-61.

[16]     Wu D., Wu S., Wang Y., Gao Z., Yang J. High-speed and accurate non-linear calibration of temperature sensors for transient aerodynamic heating experiments. Transactions of the Institute of Measurement and Control, Vol. 36, Issue 6, 2014, p. 845-852.

[17]     Wu D., Pan B., Gao Z., Mu M, Zhu L., Wang Y. On the experimental simulation of ultra-high temperature, high heat flux and nonlinear aerodynamic heating environment and thermo-mechanical testing technique. Journal of Experimental Mechanics, Vol. 27, Issue 3, 2012, p. 255-271.

[18]     Wu D., Zheng L., Pan B., Sun B., Mu M. Experimental study and numerical simulation on heat‑shielding properties of superalloy honeycomb panel for non-linear high temperature environment. Chinese Journal of Theoretical and Applied Mechanics, Vol. 44, Issue 2, 2012, p. 297-307.

[19]     Zheng L., Wu D., Pan B., Wang Y., Sun B. Experimental investigation and numerical simulation of heat-transfer properties of metallic honeycomb core structure up to 900C. Applied Thermal Engineering, Vol. 60, 2013, p. 379-386.

[20]     Wu D., Wang Y., Pan B., Mu M., Zhu L. Experimental research on the ultimate strength of hard aluminum alloy 2017 subjected to short-time radioactive heating. Materials and Design, Vol. 40, 2012, p. 502‑509.

[21]     Cohen L. Time-Frequency Analysis: Theory and Applications. Xian Jiaotong University Press, Xian, 1998.

[22]     Wu D., Zhao S., Pan B., Wang Y., Mu M., Wu S. Research on thermal-vibration joint test for wing structure of high-speed cruise missile. Acta Aeronautica et Astronautica Sinica, Vol. 33, Issue 9, 2012, p. 1633-1642.

[23]     Wu Z., Cheng H., Zhang W., Li H., Kong F. Effects of thermal environment on dynamic properties of aerospace vehicle panel structure. Acta Aeronautica et Astronautica Sinica, Vol. 34, Issue 2, 2013, p. 334-342.

Cite this article

Wu Dafang, Wang Yuewu, Pu Ying, Shang Lan, Gao Zhentong Experimental investigation of high temperature thermal‑vibration characteristics for composite wing structure of hypersonic flight vehicles. Journal of Vibroengineering, Vol. 17, Issue 2, 2015, p. 917‑927.

 

JVE International Ltd. Journal of Vibroengineering. Mar 2015, Volume 17, Issue 2. ISSN 1392-8716