1538. Influences of planetary gear parameters on the dynamic characteristics – a review

Feng Li1, Yumo Qin2, Linshan Ge3, Zhao Pang4, Shaokang Liu5, Donglong Lin6

College of Mechanical Science and Engineering, Jilin University, Changchun, 130022, China

2Corresponding author

E-mail: 1lifeng@jlu.edu.cn, 2qym_jlu@sina.com, 3gls_clgs@sina.com, 4jixiexiaozhao@163.com, 5liushaokangaikexue@163.com

(Received 8 July 2014; received in revised form 27 August 2014; accepted 18 September 2014)

Abstract. Planetary gear trains (PGTs) are widely used in the field of mechanical transmission. PGTs significantly differ from fixed-axis gear trains and exhibit unique dynamic behavior. Dynamic characteristics of PGTs are popular research topic, particularly when attempting to solve the problem of vibration noise. Moreover, the effects of the planetary gear parameters on the dynamic characteristics are paramount important. And significant researches have been conducted in this field. However, few reviews regarding these studies have been published. In this paper, the effects of certain parameters, which include mesh phase difference, geometric errors (tooth profile error, eccentricity error and misalignment), tooth profile modification, mesh stiffness, and etc., on the dynamic characteristics of PGTs are summarized. Several conclusions obtained can be used for the PGTs design and dynamic characteristics analysis. Finally, the potential research trends are pointed out.

Keywords: planetary gear, parameters effects, dynamic characteristics, vibration and noise, review.

References

[1]        Qian P. Y., Zhang Y. L., Cheng G., et al. Model analysis and verification of 2K-H planetary gear system. Journal of Vibration and Control, 2013, p. 1‑12.

[2]        Cooley C. G., Parker R. G. A review of planetary and epicyclic gear dynamics and vibrations research. Applied Mechanics Reviews, Vol. 66, Issue 4, 2014, p. 040804-1-040804-15.

[3]        Ligata H., Kahraman A., Singh A. An experimental study of the influence of manufacturing errors on the planetary gear stresses and planet load sharing. Journal of Mechanical Design, Vol. 130, Issue 4, 2008, p. 041701-1-041701-9.

[4]        Parker R. G., Lin J. Modeling, modal properties, and mesh stiffness variation instabilities of planetary gears. Report, Ohio State University, Department of Mechanical Engineering, Columbus, Ohio, May, 2001.

[5]        Parker R. G., Agashe V., Vijayakar S. M. Dynamic response of a planetary gear system using a finite element/contact mechanics model. Journal of Mechanical Design, Vol. 122, 2000, p. 304‑310.

[6]        Ambarisha V. K., Parker R. G. Nonlinear dynamics of planetary gears using analytical and finite element models. Journal of sound and vibration, Vol. 302, Issue 3, 2007, p. 577‑595.

[7]        Abousleiman V., Velex P. A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclic gear sets. Mechanism and Machine Theory, Vol. 41, Issue 6, 2006, p. 725‑748.

[8]        Kahraman A., Kharazi A. A., Umrani M. A deformable body dynamic analysis of planetary gears with thin rims. Journal of Sound and Vibration, Vol. 262, Issue 3, 2003, p. 752‑768.

[9]        Heege A., Betran J., Radovcic Y. Fatigue load computation of wind turbine gearboxes by coupled finite element, multi-body system and aerodynamic analysis. Wind Energy, Vol. 10, Issue 5, 2007, p. 395‑413.

[10]     Bu Z. H., Liu G., Wu L. Y. Research advances in planetary gear trains dynamics. Journal of Vibration and Shock, Vol. 9, Issue 9, 2010, p. 161-166, (in Chinese).

[11]     Wu S. J., Ren H., Zhu E. Y., et al. Research advances for dynamics of planetary gear trains. Engineering Journal of Wuhan University, Vol. 43, Issue 3, 2010, p. 398‑403, (in Chinese).

[12]     Sondkar P., Kahraman A. A dynamic model of a double-helical planetary gear set. Mechanism and Machine Theory, Vol. 70, 2013, p. 157‑174.

[13]     Parker R. G., Lin J. Mesh phasing relationships in planetary and epicyclic gears. Journal of Mechanical Design, Vol. 126, Issue 2, 2004, p. 365‑370.

[14]     Ambarisha V. K., Parker R. G. Suppression of planet mode response in planetary gear dynamics through mesh phasing. Journal of Vibration and Acoustics, Vol. 128, Issue 2, 2006, p. 133‑142.

[15]     Canchi S. V., Parker R. G. Effect of ring-planet mesh phasing and contact ratio on the parametric instabilities of a planetary gear ring. Journal of Mechanical Design, Vol. 130, Issue 1, 2008, p. 014501‑1-014501-6.

[16]     Jiang C. M. Research of noise and vibration of planetary gear driver. Automobile Gear, Vol. 2, 2009, p. 9‑16, (in Chinese).

[17]     Duan F. H. Effects of meshing phase on natural characteristics of planetary gears. Chinese Mechanical Engineering, Vol. 20, Issue 17, 2009, p. 2035‑2040, (in Chinese).

[18]     Parker R. G. A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration. Journal of Sound and Vibration, Vol. 236, Issue 4, 2000, p. 561‑573.

[19]     Chen Y., Ishibashi A. Investigation of the noise and vibration of planetary gear drives. ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, USA, 2003, p. 507‑513.

[20]     Liu S. H. Study on the characteristic of vibration of the sun gear for planetary gear trains with or without phase difference. Master’s Thesis, Jilin University, 2006, (in Chinese).

[21]     Blunt D. M., Keller J. A. Detection of a fatigue crack in a UH-60A planet gear carrier using vibration analysis. Mechanical Systems and Signal Processing, Vol. 20, Issue 8, 2006, p. 2095‑2111.

[22]     Ottewill J. R., Neild S. A., Wilson R. E. Intermittent gear rattle due to interactions between forcing and manufacturing errors. Journal of Sound and Vibration, Vol. 321, Issue 3, 2009, p. 913‑935.

[23]     Dai Z. M., Li G. Y. Influence of comprehensive tooth profile error of gear pair on gear transmission accuracy. Science and Technology Innovation Herald, Vol. 1, 2009, p. 085, (in Chinese).

[24]     Ottewill J. R., Neild S. A., Wilson R. E. An investigation into the effect of tooth profile errors on gear rattle. Journal of Sound and Vibration, Vol. 329, Issue 17, 2010, p. 3495‑3506.

[25]     Guo Y., Parker R. G. Analytical determination of mesh phase relations in general compound planetary gears. Mechanism and Machine Theory, Vol. 46, Issue 12, 2011, p. 1869‑1887.

[26]     Parker R. G. A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration. Journal of Sound and Vibration, Vol. 236, Issue 4, 2000, p. 561‑573.

[27]     Cheon G. J., Parker R. G. Influence of manufacturing errors on the dynamic characteristics of planetary gear systems. KSME International Journal, Vol. 18, Issue 4, 2004, p. 606‑621.

[28]     James B., Harris O. Predicting unequal planetary load sharing due to manufacturing errors and system deflections, with validation against test data. Transmission and Driveline Systems Symposium, 2002, p. 1655.

[29]     Ligata H., Kahraman A., Singh A. An experimental study on the influence of manufacturing errors on the planetary gear stresses and planet load sharing. Journal of Mechanical Design, Vol. 130, Issue 4, 2008, p. 041701-1–041701-9.

[30]     Velex P., Maatar M. A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behaviour. Journal of Sound and Vibration, Vol. 191, Issue 5, 1996, p. 629‑660.

[31]     Wagaj P., Kahraman A. Influence of tooth profile modification on helical gear durability. Journal of Mechanical Design, Vol. 124, Issue 3, 2002, p. 501‑510.

[32]     Bodas A., Kahraman A. Influence of carrier and gear manufacturing errors on the static load sharing behavior of planetary gear sets. JSME International Journal Series C, Vol. 47, Issue 3, 2004, p. 908‑915.

[33]     Luo T. J. Control method of the gear tooth profile deviations. Mechanical Transmission, Vol. 32, Issue 4, 2008, p. 97‑98, (in Chinese).

[34]     Chaari F., Fakhfakh T., Hbaieb R., et al. Influence of manufacturing errors on the dynamic behavior of planetary gears. The International Journal of Advanced Manufacturing Technology, Vol. 27, Issue 7-8, 2006, p. 738‑746.

[35]     Gu X., Velex P. On the dynamic simulation of eccentricity errors in planetary gears. Mechanism and Machine Theory, Vol. 61, 2013, p. 14‑29.

[36]     Crowther A., Ramakrishnan V., Zaidi N. A., et al. Sources of time – varying contact stress and misalignments in wind turbine planetary sets. Wind Energy, Vol. 14, Issue 5, 2011, p. 637‑651.

[37]     Litvin F. L., Lu J., Townsend D. P., et al. Computerized simulation of meshing of conventional helical involute gears and modification of geometry. Mechanism and Machine Theory, Vol. 34, Issue 1, 1999, p. 123‑147.

[38]     Litvin F. L., Fuentes A., Gonzalez-Perez I., et al. Modified involute helical gears: computerized design, simulation of meshing and stress analysis. Computer Methods in Applied Mechanics and Engineering, Vol. 192, Issue 33, 2003, p. 3619‑3655.

[39]     Vecchiato D. Tooth contact analysis of a misaligned isostatic planetary gear train. Mechanism and Machine Theory, Vol. 41, Issue 6, 2006, p. 617‑631.

[40]     Litvin F. L., Vecchiato D., Demenego A., et al. Design of one stage planetary gear train with improved conditions of load distribution and reduced transmission errors. Journal of Mechanical Design, Vol. 124, Issue 4, 2002, p. 745‑752.

[41]     Bahk C. J., Parker R. G. Analytical investigation of tooth profile modification effects on planetary gear dynamics. Mechanism and Machine Theory, Vol. 70, 2013, p. 298‑319.

[42]     Liu G., Parker R. G. Dynamic modeling and analysis of tooth profile modification for multimesh gear vibration. Journal of Mechanical Design, Vol. 130, 2008, p. 121402.

[43]     Wu Y. J., Wang J. J., Han Q. K. Static/dynamic contact FEA and experimental study for tooth profile modification of helical gears. Journal of Mechanical Science and Technology, Vol. 26, Issue 5, 2012, p. 1409‑1417.

[44]     Kahraman A., Blankenship G. W. Interactions between commensurate parametric and forcing excitations in a system with clearance. Journal of Sound and Vibration, Vol. 194, Issue 3, 1996, p. 317‑336.

[45]     Chaari F., Baccar W., Abbes M. S., et al. Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear transmission. European Journal of Mechanics-A/Solids, Vol. 27, Issue 4, 2008, p. 691‑705.

[46]     Liang X., Zuo M. J., Patel T. H. Evaluating the time-varying mesh stiffness of a planetary gear set using the potential energy method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 228, Issue 3, 2014, p. 535‑547.

[47]     Kahraman A., Blankenship G. W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters. Journal of Applied Mechanics, Vol. 64, Issue 1, 1997, p. 217‑226.

[48]     Parker R. G., Vijayakar S. M., Imajo T. Non-linear dynamic response of a spur gear pair: modelling and experimental comparisons. Journal of Sound and Vibration, Vol. 237, Issue 3, 2000, p. 435‑455.

[49]     Tian X. H., Zuo M. J., Fyfe K. R. Analysis of the vibration response of a gearbox with gear tooth faults. ASME 2004 International Mechanical Engineering Congress and Exposition, Anaheim, California, 2004, p. 785‑793.

[50]     Liang X., Zuo M. J. Dynamic simulation of a planetary gear set and estimation of fault growth on the sun gear. International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2013, p. 1667-1672.

[51]     Lin J., Parker R. G. Planetary gear parametric instability caused by mesh stiffness variation. Journal of Sound and Vibration, Vol. 249, Issue 1, 2002, p. 129‑145.

[52]     Lin J., Parker R. G. Mesh stiffness variation instabilities in two-stage gear systems. Journal of Vibration and Acoustics, Vol. 124, Issue 1, 2002, p. 68‑76.

[53]     Inalpolat M., Kahraman A. A dynamic model to predict modulation sidebands of a planetary gear set having manufacturing errors. Journal of Sound and Vibration, Vol. 329, Issue 4, 2010, p. 371‑393.

[54]     Kim W., Lee J. Y., Chung J. Dynamic analysis for a planetary gear with time-varying pressure angles and contact ratios. Journal of Sound and Vibration, Vol. 331, Issue 4, 2012, p. 883‑901.

[55]     İmrek H., Düzcükoğlu H. Relation between wear and tooth width modification in spur gears. Wear, Vol. 262, Issue 3, 2007, p. 390‑394.

[56]     Sun T., Hu H. Y. Nonlinear dynamics of a planetary gear system with multiple clearances. Mechanism and Machine Theory, Vol. 38, Issue 12, 2003, p. 1371‑1390.

[57]     Guo Y., Parker R. G. Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity. European Journal of Mechanics-A/Solids, Vol. 29, Issue 6, 2010, p. 1022‑1033.

[58]     Lin T., Ou H., Li R. A finite element method for 3D static and dynamic contact/impact analysis of gear drives. Computer Methods in Applied Mechanics and Engineering, Vol. 196, Issue 9, 2007, p. 1716‑1728.

[59]     Gill-Jeong C., Parker R. G. Influence of bearing stiffness on the static properties of a planetary gear system with manufacturing errors. KSME International Journal, Vol. 18, Issue 11, 2004, p. 1978‑1988.

[60]     Theodossiades S., Natsiavas S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash. Journal of Sound and Vibration, Vol. 229, Issue 2, 2000, p. 287‑310.

[61]     Shyi-Jeng Tsai, Huang G. L, Ye S. Y. Gear meshing analysis of planetary gear sets with a floating sun gear. Mechanism and Machine Theory, 2014.

[62]     Litak G., Friswell M. I. Vibration in gear systems. Chaos, Solitons and Fractals, Vol. 16, Issue 5, 2003, p. 795‑800.

[63]     Litvin F. L., Fuentes A., Vecchiato D., et al. New design and improvement of planetary gear trains. NASA Glenn Research Center, Technical Report Issue NASA/CR-2004-213101, http://gltrs.grc.nasa.gov.

[64]     Guo Y., Jonathan K., LaCava W. Combine effects of gravity, bending moment, bearing clearance, and input torque on wind turbine planetary gear load sharing. American Gear Manufacturers Association Fall Technical Meeting, Dearborn, Michigan, 2012, p. 53‑68.

[65]     Singh A. Influence of planetary needle bearings on the performance of single and double pinion planetary systems. Journal of Mechanical Design, Vol. 129, Issue 1, 2007, p. 85‑94.

[66]     Vaishya M., Singh R. Strategies for modeling friction in gear dynamics. Journal of Mechanical Design, Vol. 125, Issue 2, 2003, p. 383‑393.

[67]     Vaishya M., Singh R. Sliding friction-induced non-linearity and parametric effects in gear dynamics. Journal of Sound and Vibration, Vol. 248, Issue 4, 2001, p. 671‑694.

[68]     Cai Z. C., Liu H., Xiang C. L., et al. Research on natural characteristics and sensitivity for torsional vibration of a vehicle multistage planetary gears. China Mechanical Engineering, Vol. 22, Issue 1, 2011, p. 96‑101, (in Chinese).

[69]     Kiracofe D. R., Parker R. G. Structured vibration modes of general compound planetary gear systems. Journal of Vibration and Acoustics, Vol. 129, Issue 1, 2007, p. 1‑16.

[70]     Guo Y. C., Parker R. G. Sensitivity of general compound planetary gear natural frequencies and vibration modes to model parameters. Journal of Vibration and Acoustics, Vol. 132, Issue 1, 2010, p. 011006-1-011006-13.

[71]     Mundo D. Geometric design of a planetary gear train with non-circular gears. Mechanism and Machine Theory, Vol. 41, Issue 4, 2006, p. 456‑472.

Cite this article

Li Feng, Qin Yumo, Ge Linshan, Pang Zhao, Liu Shaokang, Lin Donglong Influences of planetary gear parameters on the dynamic characteristics – a review. Journal of Vibroengineering, Vol. 17, Issue 2, 2015, p. 574‑586.

 

© JVE International Ltd. Journal of Vibroengineering. Mar 2015, Volume 17, Issue 2. ISSN 1392-8716