83. Superimposed moiré measurements of vibrations of circular structures

R. Maskeliūnas1, K. Ragulskis2, P. Paškevičius3, L. Patašienė4, L. Ragulskis5

1Vilnius Gediminas Technical University, Vilnius, Lithuania

2, 3, 4Kaunas University of Technology, Kaunas, Lithuania

5Vytautas Magnus University, Kaunas, Lithuania

1Corresponding author

E-mail: 1rimas.maskeliunas@vgtu.lt, 2kazimieras3@hotmail.com, 3info@vaivorairko.lt, 4laima.patasiene@ktu.lt, 5l.ragulskis@if.vdu.lt

(Received 27 October 2015; received in revised form 5 January 2016; accepted 17 January 2016)

Abstract. In the paper plane vibrations of an elastic circular structure are analyzed. Investigations of a two dimensional problem are performed. It is assumed that vibrations are taking place. Several first eigenmodes are investigated. Results obtained by using the experimental procedure of stroboscopic geometric moiré are analyzed. By applying the superimposed moiré technique, the results are investigated. Different numbers of gaps are used and provide results of different quality.

Keywords: circular structure, elastic structure, plane vibrations, eigenmode, stroboscopic moiré, geometric moiré, superimposed moiré, experimental results.


[1]        Huimin X., Guotao W., Fulong D., Guangjun Z., Xingfu L., Fangju Z., Aiming X. The dynamic deformation measurement of the high speed heated LY12 aluminium plate with moiré interferometry. Journal of Materials Processing Technology, Vol. 83, Issues 1‑3, 1998, p. 159‑163.

[2]        Deason V. A., Epstein J. S., Abdallah A. Dynamic diffraction moiré: theory and applications. Optics and Lasers in Engineering, Vol. 12, Issues 2‑3, 1990, p. 173‑187.

[3]        Kokaly M. T., Lee J., Kobayashi A. S. Moiré interferometry for dynamic fracture study. Optics and Lasers in Engineering, Vol. 40, Issue 4, 2003, p. 231‑247.

[4]        Timoshenko S. P., Goodier J. N. Theory of Elasticity. Nauka, Moscow, 1975.

[5]        Soifer V. A. Computer processing of images. Herald of the Russian Academy of Sciences, Vol. 71, Issue 2, 2001, p. 119‑129.

[6]        Vest C. Holographic Interferometry. Mir, Moscow, 1982.

[7]        Han B., Post D., Ifju P. Moiré interferometry for engineering mechanics: current practices and future developments. Journal of Strain Analysis for Engineering Design, Vol. 36, Issue 1, 2001, p. 101‑117.

[8]        Field J. E., Walley S. M., Proud W. G., Goldrein H. T., Siviour C. R. Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering, Vol. 30, Issue 7, 2004, p. 725‑775.

[9]        Dai F. L., Wang Z. Y. Geometric micron moiré. Optics and Lasers in Engineering, Vol. 31, Issue 3, 1999, p. 191‑198.

[10]     Liang C. Y., Hung Y. Y., Durelli A. J., Hovanesian J. D. Time-averaged moiré method for in‑plane vibration analysis. Journal of Sound and Vibration, Vol. 62, Issue 2, 1979, p. 267‑275.

Cite this article

Maskeliūnas R., Ragulskis K., Paškevičius P., Patašienė L., Ragulskis L. Superimposed moiré measurements of vibrations of circular structures. Journal of Measurements in Engineering, Vol. 4, Issue 1, 2016, p. 15‑22.


Journal of Measurements in Engineering. March 2016, Volume 4, Issue 1

© JVE International Ltd. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania