80. Selection of number of gaps in superimposed moiré measurements

R. Maskeliūnas1, K. Ragulskis2, P. Paškevičius3, A. Pauliukas4, L. Ragulskis5

1Vilnius Gediminas Technical University, Vilnius, Lithuania

2, 3Kaunas University of Technology, Kaunas, Lithuania

4Aleksandras Stulginskis University, Akademija, Kaunas District, Lithuania

5Vytautas Magnus University, Kaunas, Lithuania

1Corresponding author

E-mail: 1rimas.maskeliunas@vgtu.lt, 2kazimieras3@hotmail.com, 3petras.paskevicius@ktu.lt, 4arvydas.pauliukas@asu.lt, 5l.ragulskis@if.vdu.lt

(Received 23 September 2015; received in revised form 26 October 2015; accepted 3 November 2015)

Abstract. Plane vibrations of a two dimensional elastic structure are investigated in this paper. Vibrations taking place according to the eigenmode are represented by using the method of stroboscopic geometric moiré. Selection of number of gaps when using the superimposed moiré technique is investigated and recommendations for choosing of their number are provided.

Keywords: elastic structure, plane vibrations, eigenmode, stroboscopic moiré, geometric moiré, superimposed moiré, experimental results.


[1]        Maskeliūnas R., Ragulskis K., Paškevičius P., Patašienė L., Pauliukas A., Ragulskis L. Measurement of plane vibrations of a two dimensional elastic structure. Journal of Measurements in Engineering, Vol. 3, Issue 2, 2015, p. 42‑47.

[2]        Ragulskis K., Maskeliūnas R., Zubavičius L. Analysis of structural vibrations using time averaged shadow moire. Journal of Vibroengineering, Vol. 8, Issue 3, 2006, p. 26‑29.

[3]        Saunorienė L., Ragulskis M. Time‑Averaged Moire Fringes. Lambert Academic Publishing, 2010.

[4]        Ragulskis M., Maskeliūnas R., Ragulskis L., Turla V. Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moire. Optics and Lasers in Engineering, Vol. 43, 2005, p. 951‑962.

[5]        Huimin X., Guotao W., Fulong D., Guangjun Z., Xingfu L., Fangju Z., Aiming X. The dynamic deformation measurement of the high speed heated LY12 aluminium plate with moire interferometry. Journal of Materials Processing Technology, Vol. 83, Issues 1‑3, 1998, p. 159‑163.

[6]        Deason V. A., Epstein J. S., Abdallah A. Dynamic diffraction moire: theory and applications. Optics and Lasers in Engineering, Vol. 12, Issues 2‑3, 1990, p. 173‑187.

[7]        Kokaly M. T., Lee J., Kobayashi A. S. Moire interferometry for dynamic fracture study. Optics and Lasers in Engineering, Vol. 40, Issue 4, 2003, p. 231‑247.

[8]        Timoshenko S. P., Goodier J. N. Theory of Elasticity. Nauka, Moscow, 1975.

[9]        Soifer V. A. Computer processing of images. Herald of the Russian Academy of Sciences, Vol. 71, Issue 2, 2001, p. 119‑129.

[10]     Vest C. Holographic Interferometry. Mir, Moscow, 1982.

[11]     Han B., Post D., Ifju P. Moire interferometry for engineering mechanics: current practices and future developments. Journal of Strain Analysis for Engineering Design, Vol. 36, Issue 1, 2001, p. 101‑117.

[12]     Field J. E., Walley S. M., Proud W. G., Goldrein H. T., Siviour C. R. Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering, Vol. 30, Issue 7, 2004, p. 725‑775.

[13]     Dai F. L., Wang Z. Y. Geometric micron moire. Optics and Lasers in Engineering, Vol. 31, Issue 3, 1999, p. 191‑198.

[14]     Liang C. Y., Hung Y. Y., Durelli A. J., Hovanesian J. D. Time-averaged moire method for in-plane vibration analysis. Journal of Sound and Vibration, Vol. 62, Issue 2, 1979, p. 267‑275.

Cite this article

Maskeliūnas R., Ragulskis K., Paškevičius P., Pauliukas A., Ragulskis L. Selection of number of gaps in superimposed moiré measurements. Journal of Measurements in Engineering, Vol. 3, Issue 4, 2015, p. 138‑144.


Journal of Measurements in Engineering. December 2015, Volume 3, Issue 4

© JVE International Ltd. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania