78. Design of the testing system for solid propellant rocket motor thrust measurements using mathematical modelling techniques

Algimantas Fedaravičius1, Saulius Račkauskas2, Arvydas Survila3, Laima Patašienė4

Institute of Defence Technologies, Kaunas University of Technology, Kaunas, Lithuania

2Corresponding author

E-mail: 1algimantas.fedaravicius@ktu.lt, 2saulius.rackauskas@ktu.edu, 3arvydas.survila@ktu.lt, 4laima.patasiene@ktu.lt

(Received 6 October 2015; received in revised form 10 December 2015; accepted 21 December 2015)

Abstract. This paper describes design technique of solid fuel rocket motor testing system for its thrust measuring capabilities. The design process consists of 2 parts. In first part the mathematic modelling technique will be described for the mechanical section, in second – electrical. This will help to explain versatility and capabilities for coupling of the parametric design process for measurement systems design using software supported modelling tools. In order to determine the potential utility load, module design and the stability of the system in next chapter model of the system is compared with actual measurement system prototype during experimental testing and evaluation. The error between modelled and real systems is measured and discussed. The final experiment is discussed where rocket motor was tested. Modelled thrust characteristics was compared with measured data for the final discussion and conclusions.

Keywords: rocket motor, thrust, measuring system, modelling, test stand.


[1]        Desrochers M. F., Olsen G. W., Hudson M. K. A ground test rocket thrust measurement system. Journal of Pyrotechnics, Issue 14, 2001, p. 50‑55.

[2]        De Lucena S. E., De Aquino M. G., Caporalli-Filho A. A load cell for grain‑propelled ballistic rocket thrust measurement. Proceedings of the Instrumentation and Measurement Technology Conference, Vol. 3, 2005, p. 1767‑1772.

[3]        Ren Z., Sun B., Zhang J., Qian M. The dynamic model and acceleration compensation for the thrust measurement system of attitude/orbit rocket. WMSO’08 International Workshop on Modelling and Simulation and Optimization, 2008, p. 30‑33.

[4]        Sun B., Qian M., Zhang J. Review and prospect on research for piezoelectric sensors and dynamometers. Journal – Dalian University of Technology, Vol. 41, Issue 2, 2001, p. 127‑134.

[5]        Mason D. R., Folkman S. L., Behring M. A. Thrust oscillations of the space shuttle solid rocket booster motor during static tests. AIAA Paper, Vol. 79, Issue 1138, 1979, p. 18-20.

[6]        Brownlee W. G., Marble F. E. An experimental investigation of unstable combustion in solid propellant rocket motors. ARS Progress in Astronautics and Rocketry: Solid Propellant Rocket Research, Vol. 1, 1959, p. 455‑494.

[7]        Peterson J. S., Bartholomae R. C. Design and instrumentation of a large reverberation chamber. Proceedings on Noise-Con, 2003, p. 23‑25.

[8]        Rafique A. F., Zeeshan Q., Kamran A., Guozhu L. A new paradigm for star grain design and optimization. Aircraft Engineering and Aerospace Technology: An International Journal, Vol. 87, Issue 5, 2015, p. 476‑482.

[9]        Hartfield R., Jenkins R., Burkhalter J., Foster W. A review of analytical methods for solid rocket motor grain analysis. 39th Join Propulsion Conference and Exhibit, 2003, p. 1‑15.

[10]     Korobow A. I., Batenev A. V., Brazhkin Y. A. Nonlinear elastic properties of D16 aluminum alloy and KCh35-10 cast iron. Moscow State University, Moscow, 1999, p. 106‑110.

[11]     Gillette O. L. Measurement of static strain at 2000 °F. Experimental Mechanics, Vol. 15, Issue 8, 1975, p. 316‑322.

[12]     Taylor T. S. Introduction to Rocket Science and Engineering. Boca Raton CRC Press Taylor and Francis Group, Philadelphia, 2009, p. 89-92.

Cite this article

Fedaravičius Algimantas, Račkauskas Saulius, Survila Arvydas, Patašienė Laima Design of the testing system for solid propellant rocket motor thrust measurements using mathematical modelling techniques. Journal of Measurements in Engineering, Vol. 3, Issue 4, 2015, p. 123‑131.


Journal of Measurements in Engineering. December 2015, Volume 3, Issue 4

© JVE International Ltd. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania