74. Measurement of stability of a pipe system with flowing fluid

A. Sudintas1, P. Paškevičius2, B. Spruogis3, R. Maskeliūnas4

1, 2Kaunas University of Technology, Kaunas, Lithuania

3, 4Vilnius Gediminas Technical University, Vilnius, Lithuania

1Corresponding author

E-mail: 1antanas.sudintas@ktu.lt, 2petras.paskevicius@ktu.lt, 3bronislovas.spruogis@vgtu.lt, 4rimas.maskeliunas@vgtu.lt

(Received 20 July 2015; received in revised form 21 August 2015; accepted 28 August 2015)

Abstract. The two dimensional system of coupled vibrating pipes is investigated. The model of a pipe system consisting from two dimensional beams is employed. The problem of stability because of the reduction of stiffness caused by the flow of fluid is solved and the stability eigenmodes are determined. The places where the deflections of the stability eigenmodes are large are recommended for the location of measurement devices.

Keywords: measurement of stability, pipe, beam, flowing fluid, stability eigenmodes, finite elements.


[1]        Sudintas A., Paškevičius P., Spruogis B., Maskeliūnas R. Measurement of vibrations of a pipe system. Journal of Measurements in Engineering, Vol. 1, Issue 2, 2013, p. 101‑105.

[2]        Sudintas A., Paškevičius P., Spruogis B. Transverse vibrations of a two-dimensional pipe system. Journal of Measurements in Engineering, Vol. 2, Issue 4, 2014, p. 185‑189.

[3]        Bathe K. J. Finite Element Procedures in Engineering Analysis. Prentice-Hall, New Jersey, 1982.

[4]        Zienkiewicz O. C. The Finite Element Method in Engineering Science. Mir, Moscow, 1975, (in Russian).

[5]        Bolotin V. V. Vibrations in Engineering. Handbook, Vol. 1. Mashinostroienie, Moscow, 1978, (in Russian).

[6]        Prokofiev A., Makariyants G., Shakhmatov E. Modeling of pipeline vibration under the pressure ripples in the working fluid. 17th International Congress on Sound and Vibration, Cairo, Egypt, 2010, p. 1‑8.

[7]        Lin Yih-Hwang, Tsai Yau-Kun Nonlinear vibrations of Timoshenko pipes conveying fluid. International Journal of Solids and Structures, Vol. 34, Issue 23, 1997, p. 2945‑2956.

[8]        Murphy J. F. Transverse vibration of a simply supported beam with symmetric overhang of arbitrary length. Journal of Testing and Evaluation, Vol. 25, Issue 5, 1997, p. 1‑3.

[9]        Zhang Y. L., Gorman D. G., Reese J. M. Analysis of the vibration of pipes conveying fluid. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 213, Issue 8, 1999, p. 849‑860.

[10]     Chellapilla K. R., Simha H. S. Vibrations of fluid-conveying pipes resting on two-parameter foundation. The Open Acoustics Journal, Vol. 1, 2008, p. 24‑33.

[11]     Liu L., Xuan F. Flow-induced vibration analysis of supported pipes conveying pulsating fluid using precise integration method. Mathematical Problems in Engineering, 2010, p. 1‑15.

[12]     Maalawi K. Y., EL-Sayed H. E. M. Stability optimization of functionally graded pipes conveying fluid. World Academy of Science, Engineering and Technology, Vol. 79, 2011, p. 374‑379.

Cite this article

Sudintas A., Paškevičius P., Spruogis B., Maskeliūnas R. Measurement of stability of a pipe system with flowing fluid. Journal of Measurements in Engineering, Vol. 3, Issue 3, 2015, p. 87‑91.


Journal of Measurements in Engineering. September 2015, Volume 3, Issue 3
© JVE International Ltd. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania