65. Application of electronic dental dynamometer in biomechanics

Tomasz Lipski1, Edward Kijak2, Kazimierz Witaszek3, Damian Gŕska4, Jerzy Margielewicz5

1Silesian Medical University, Department of Dental Prosthetics and Dentistry Materials,
pl. Akademicki 17, Bytom, Poland

2Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland

3, 4, 5Faculty of Transport Silesian University of Technology,
Krasińskiego Street 8, 40-019 Katowice, Poland

3Corresponding author

E-mail: 1tomek.lipski@hotmail.com, 3kazimierz.witaszek@polsl.pl, 4damian.gaska@polsl.pl, 5jerzy.margielewicz@polsl.pl

(Received 13 January 2015; received in revised form 1 March 2015; accepted 14 March 2015)

Abstract. The paper presents a microprocessor force recorder, whose design allows the measurement of occlusal forces on a continuous basis with a maximum frequency of 250 Hz. The electronic dental dynamometer records the results of clinical trials in the form of graphic images and text files which are presented directly onto the computer. The recorded results can be processed digitally, as well as compared with other measurements, resulting in the ability to monitor the progress and potential advances in the treatment of masticatory organ diseases. An important advantage of the proposed solution is the simple and intuitive design. In addition, the dynamometer requires no power coming directly from the electricity network, as it is powered through a 5 V USB port. This feature not only determines the comfort of use, but also the safety as the voltage does not pose a risk to the patient during examination. The results recorded during clinical trials using the electronic dental dynamometer are consistent with those obtained using a calibrated mechanical dental dynamometer.

Keywords: microprocessor force recorder, electronic dental dynamometer, force sensor.


[1]        Chladek W. The mechanical modeling of selected states of the human mandible. Scientific Papers of Silesian University of Technology, Metallurgy 59, 2000, (in Polish).

[2]        Paphangkorakit J., Osborn J. W. Effects on human maximum bite forces of biting on a softer or harder object. Archives of Oral Biology, Vol. 43, Issue 11, 1998, p. 833‑839.

[3]        Chladek W., Lipski T., Karasiński A. Experimental evaluation of occlusal forces. Acta of Bioengineering and Biomechanics, Vol. 3, Issue 1, 2001, p. 25‑37.

[4]        Dýraçoðlu D., Güçlü B., Alptekin K., Karan A., Aksoy C. Maximal bite force measurement by the Istanbul bite force recorder. Journal of Physical Medicine and Rehabilitation Sciences, Vol. 3, 2008, p. 117‑123.

[5]        Calderon P. S., Kogawa E. M., Lauris J. R. P., Conti P. C. R. The influence of gender and bruxism on the human maximum bite force. Journal of Applied Oral Sciencer, Vol. 14, Issue 6, 2006, p. 448‑453.

[6]        Walimoto A., Könönen M. A novel bite force recorder and maximal isometric bite force values for healthy young adult. Scandinavian Journal of Dental Research, Vol. 101, Issue 3, 1993, p. 171‑175.

[7]        Singh S., Utreja A. K., Sandhu N., Dhaliwal Y. S. An Innovative miniature bite force recorder. International Journal of Clinical Pediatric Dentistry, Vol. 4, Issue 2, 2011, p. 113‑118.

[8]        Sathyanarayana H. P., Premkumar S. Assessment of maximum voluntary bite force in children and adults with normal occlusion. International Journal of Pharmaceutical Science and Health Care, Vol. 2, Issue 1, 2012, p. 64‑70.

[9]        Krzemień J., Baron S. Axiographic and clinical assessment of temporomandibular joint function in patients with partial edentulism. Acta of Bioengineering and Biomechanics, Vol. 15, Issue 1, 2013, p. 19‑26.

[10]     Margielewicz J., Chladek W., Lipski T. Kinematical analysis of mandibular motion in the sagittal plane. Acta of Bioengineering and Biomechanics, Vol. 10, Issue 1, 2008, p. 9‑19.

[11]     Gŕska D., Kijak E., Lipski T., Margielewicz J. Numerical modelling of human masticatory organ kinematics. Mechanika, Vol. 18, Issue 4, 2012, p. 447‑452.

[12]     Wojnarowski J., Kijak E., Gŕska D., Margielewicz J. Research model of stomatognathic system’s kinematics in protrusive movement. International Journal of Applied Mechanicics and Engineering, Vol. 17, Issue 3, 2012, p. 1051‑1059.

[13]     Kim B. I., Jeong S. H., Chung K. H., Cho Y. K., Kwon H. K., Choi C. H. Subjective food intake ability in relation to maximal bite force among Korean adults. Journal of Oral Rehabilitation, Vol. 36, 2009, p. 168‑175.

[14]     Margielewicz J., Kijak E., Lipski T., Pihut M., Kosiewicz J., Lietz-Kijak D. Biostatic equilibrium model study of human masticatory system. Center for Biomedical Engineering of Silesian University of Technology, Gliwice, Vol. 203, 2012, (in Polish).

[15]     Lipski T. Influence of selected characteristics of oral forces to maintain the full lower denture with alveolar bone loss. Katowice, 2005, (in Polish).

[16]     Kociubiński A., Duk M., Zyska T., Michalski W. Sensor measuring system for the treatment of bite force evaluation of masticatory efficiency. Electrical Review, Vol. 86, Issue 20, 2010, p. 50‑52, (in Polish).

[17]     Abu Alhaija E. S. J., Al Zo’ubi I. A., Al Rousan M. E., Hammad M. M. Maximum occlusal bite forces in Jordanian individuals with different dentofacial vertical skeletal patterns. European Journal of Orthodontics, Vol. 32, 2010, p. 71‑77.

[18]     Sarzyński A. Measurements of pressure forces flexible FlexiForce sensors. Practical Electronics, Vol. 3, 2010, p. 134‑137, (in Polish).

[19]     Wojnarowski J., Margielewicz J., Chladek W. Modelling studies as a tool for the identification of masticatory muscle strength. Acta Mechanica et Automatica, Vol. 4, Issue 3, 2010, p. 138‑142, (in Polish).

Cite this article

Lipski Tomasz, Kijak Edward, Witaszek Kazimierz, Gŕska Damian, Margielewicz Jerzy Application of electronic dental dynamometer in biomechanics. Journal of Measurements in Engineering, Vol. 3, Issue 1, 2015, p. 17‑22.


Journal of Measurements in Engineering. March 2015, Volume 3, Issue 1
© JVE International Ltd. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania