50. Measurement of stresses in a vibrating polymeric film

V. Miliūnas1, E. Kibirkštis2, K. Ragulskis3, P. Paškevičius4, L. Ragulskis5, A. Voloshin6, I. Venytė7

1, 2, 7Kaunas University of Technology, Kaunas, 51424, Lithuania

3, 4Kaunas University of Technology, Kaunas, 44029, Lithuania

5Vytautas Magnus University, Kaunas, Lithuania

6Lehigh University, Bethlehem, Pennsylvania, 18015, USA

2Corresponding author

E-mail: 1valdas.miliunas@ktu.lt, 2edmundas.kibirkstis@ktu.lt, 3kazimieras3@hotmail.com, 4petras.paskevicius@ktu.lt, 5l.ragulskis@if.vdu.lt, 6arkady.voloshin@lehigh.edu, 7ingrida.venyte@ktu.lt

(Received 1 June 2014; received in revised form 10 June 2014; accepted 12 June 2014)

Abstract. One dimensional model for the investigation of longitudinal vibrations of polymeric film is investigated. Comparison of stroboscopic and time averaged intensities in the photo‑elastic images is performed. Results about the required number of images for performing time averaging are provided. Recommendations for simultaneous application of both stroboscopic and time averaged photo‑elasticity for measurement of stresses are given. One dimensional model for the investigation of vibrations of polymeric film having two nodal degrees of freedom (longitudinal displacement and displacement of the upper surface, assuming that displacement of the lower surface is of the same value but in the opposite direction) is investigated. This model is applied for the interpretation of results of thermo‑elastic analysis. Recommendations for the interpretation of the stress field by using photo‑elastic and thermo‑elastic methods are provided.

Keywords: measurement of stresses, time averaged photo‑elasticity, stroboscopic photo‑elasticity, polymeric film, one dimensional model, vibrations, eigenmodes, plane stress, thermo‑elasticity.


[1]        Gamage P., Xie S. Q. A real-time vision system for defect inspection in cast extrusion manufacturing process. The International Journal of Advanced Manufacturing Technology, Vol. 40, Issue 1‑2, 2009, p. 144‑156.

[2]        Soroka W. Fundamentals of Packaging. Institute of Packaging Professionals, Second Edition, Herndorn, Virginia, 1999, p. 589.

[3]        Rossini N. S., Dassisti M., Benyounis K. Y., Olabi A. G. Methods of measuring residual stresses in components. Materials & Design, Vol. 35, Issue 3, 2012, p. 572‑588.

[4]        Parlevliet P., Bersee H. E. N., Beukers A. Residual stresses in thermoplastic composites – a study of the literature – Part II: Experimental techniques. Composites Part A: Applied Science and Manufacturing, Vol. 38, Issue 3, 2007, p. 651‑665.

[5]        Pak S. Y., Kim S. Y., Kim S. H., Youn J. R. Measurement of residual stresses in polymeric parts by indentation method. Polymer Testing, Vol. 32, Issue 5, 2013, p. 946‑952.

[6]        Kim S. Y., Kim Ch. H., Kim S. H., Oh K. J., Youn J. R. Measurement of residual stresses in film insert molded parts with complex geometry. Polymer Testing, Vol. 28, Issue 5, 2009, p. 500 507.

[7]        Metehri A., Serier B., Bachir B., Belhouari M., Mecirdi M. A. Numerical analysis of the residual stresses in polymer matrix composites. Materials & Design, Vol. 30, Issue 7, 2009, p. 2332‑2338.

[8]        Postawa P., Kwiatkowski D. Residual stress distribution in injection molded parts. Journal of Achievements in Materials and Manufacturing Engineering, Vol. 18, Issue 2, 2006, p. 172‑174.

[9]        Kamal M. R., Lai-Fook R. A., Hernandez-Aguilar J. R. Residual thermal stresses in injection moldings of thermoplastics: a theoretical and experimental study. Polymer Engineering & Science, Vol. 42, Issue 5, 2002, p. 1098‑1114.

[10]     Colombo C., Guagliano M. Photoelastic analysis of cylindrical elements with internal cracks under Hertz contact loading. Fatigue & Fracture of Engineering Materials & Structures, Vol. 33, Issue 12, 2010, p. 885‑896.

[11]     Aben H., Anton J., Errapart A. Modern photoelasticity for residual stress measurement in glass. Strain, Vol. 44, Issue 1, 2008, p. 40‑48.

[12]     Ragulskienė J., Maciulevičius J., Vasiliauskas R., Daučanskienė K. Experimental – numerical techniques for thermoelastic analysis of structural vibrations. Ultragarsas, Vol. 4, Issue 57, 2005, p. 37‑39.

[13]     Zienkiewicz O. C. The Finite Element Method in Engineering Science. Moscow: Mir, 1975, (in Russian).

[14]     Bathe K. J. Finite Element Procedures in Engineering Analysis. New Jersey: Prentice-Hall, 1982.

Cite this article

Miliūnas V., Kibirkštis E., Ragulskis K., Paškevičius P., Ragulskis L., Voloshin A., Venytė I. Measurement of stresses in a vibrating polymeric film. Journal of Measurements in Engineering, Vol. 2, Issue 2, 2014, p. 122‑129.


Journal of Measurements in Engineering. June 2014, Volume 2, Issue 2
© JVE International Ltd. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania